28 research outputs found

    Bad Characters: Imperceptible NLP Attacks

    Get PDF

    Augmentation Backdoors

    Full text link
    Data augmentation is used extensively to improve model generalisation. However, reliance on external libraries to implement augmentation methods introduces a vulnerability into the machine learning pipeline. It is well known that backdoors can be inserted into machine learning models through serving a modified dataset to train on. Augmentation therefore presents a perfect opportunity to perform this modification without requiring an initially backdoored dataset. In this paper we present three backdoor attacks that can be covertly inserted into data augmentation. Our attacks each insert a backdoor using a different type of computer vision augmentation transform, covering simple image transforms, GAN-based augmentation, and composition-based augmentation. By inserting the backdoor using these augmentation transforms, we make our backdoors difficult to detect, while still supporting arbitrary backdoor functionality. We evaluate our attacks on a range of computer vision benchmarks and demonstrate that an attacker is able to introduce backdoors through just a malicious augmentation routine.Comment: 12 pages, 8 figure

    To compress or not to compress: Understanding the Interactions between Adversarial Attacks and Neural Network Compression

    Get PDF
    As deep neural networks (DNNs) become widely used, pruned and quantised models are becoming ubiquitous on edge devices; such compressed DNNs are popular for lowering computational requirements.Meanwhile, recent studies show that adversarial samples can be effective at making DNNs misclassify. We, therefore, investigate the extent to which adversarial samples are transferable between uncompressed and compressed DNNs. We find that adversarial samples remain transferable for both pruned and quantised models.For pruning, the adversarial samples generated from heavily pruned models remain effective on uncompressed models. For quantisation, we find the transferability of adversarial samples is highly sensitive to integer precision.Partially supported with funds from Bosch-Forschungsstiftung im Stifterverban

    Wide Attention Is The Way Forward For Transformers?

    Full text link
    The Transformer is an extremely powerful and prominent deep learning architecture. In this work, we challenge the commonly held belief in deep learning that going deeper is better, and show an alternative design approach that is building wider attention Transformers. We demonstrate that wide single layer Transformer models can compete with or outperform deeper ones in a variety of Natural Language Processing (NLP) tasks when both are trained from scratch. The impact of changing the model aspect ratio on Transformers is then studied systematically. This ratio balances the number of layers and the number of attention heads per layer while keeping the total number of attention heads and all other hyperparameters constant. On average, across 4 NLP tasks and 10 attention types, single layer wide models perform 0.3% better than their deep counterparts. We show an in-depth evaluation and demonstrate how wide models require a far smaller memory footprint and can run faster on commodity hardware, in addition, these wider models are also more interpretable. For example, a single layer Transformer on the IMDb byte level text classification has 3.1x faster inference latency on a CPU than its equally accurate deeper counterpart, and is half the size. We therefore put forward wider and shallower models as a viable and desirable alternative for small models on NLP tasks, and as an important area of research for domains beyond this
    corecore